PS-PERMAG: Comparison of Versions 2.7 to 3.3

Remark: All versions are downward compatible. This means that calculations from older versions can be read into version 3.3 and can be used for new calculations and analyses.

Please delete all older versions of PS-PERMAG before installing the newest one. New features v. 3.3 in red.

Feature	$\begin{aligned} & \hline \text { Vers. } \\ & 2.7 / 2.8 \end{aligned}$	$\begin{gathered} \hline \text { Vers. } \\ 3.0 \end{gathered}$	$\begin{gathered} \hline \text { Vers. } \\ 3.1 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Vers. } \\ 3.2 \end{gathered}$	$\begin{gathered} \hline \text { Vers. } \\ 3.3 \end{gathered}$	Remarks
D Cylinder diametrical	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
\mathbf{M} Cylinder homogeneously multipolar	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
MS cylinder segments, homogeneously multipolar	\checkmark	\checkmark	\checkmark	since vers. 3.2	\checkmark	Including arbitrary pole patterns and pole gaps
\mathbf{L} Cylinder laterally multipolar	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Sinusoidal magnetization, with adjustable shape since version 3.3
A Cylinder axially multipolar	\checkmark	\checkmark	\checkmark	magneti c bearings . since vers.3.2	\checkmark	Since version 3.2 optional simulation of axial magnetic bearings,
AS Cylinder segments, axially multipolar	since vers. 2.7	\checkmark	\checkmark	\checkmark	\checkmark	Including arbitrary pole patterns and pole gaps
AL Cylinder axially lateral		\checkmark	\checkmark	\checkmark	\checkmark	Sinusoidal magnetization, with adjustable shape since version 3.3
C Cuboid homogeneously multipolar	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	\checkmark	Rigid alternating magnetization, with additional sinusoidal magnetization and adjustable shape since version 3.3.
cuboid segments, axially multipolar	since vers. 2.7	\checkmark	$\sqrt{ }$	\checkmark	\checkmark	Including arbitrary pole patterns and pole gaps
CK Cuboid Kit				since vers. 3.2	\checkmark	Assembly of magnetic blocks with arbitrary size, location and magnetization
\mathbf{R} Cylinder radially multipolar	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
RS cylinder segments, radially multipolar	since vers. 2.8	\checkmark	\checkmark	\checkmark	\checkmark	Including arbitrary pole patterns and pole gaps
H Halbach cylinders	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	\checkmark	Treats both cases of continuous and segmented magnetization
2D-M 2D electrical machine, homogeneously multipolar	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Includes computation of motor characteristic curves
2D-R 2D electrical machine, radially multipolar	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Includes computation of motor characteristic curves
SD Sensor magnets two pole diametrical			\checkmark	\checkmark	\checkmark	Two pole sensor magnets with enhanced geometric features like depressions and ledges, magnetization diametrical
SA Sensor magnets two pole axial			\checkmark	\checkmark	\checkmark	Two pole sensor magnets with enhanced geometric features like depressions and ledges, magnetization two pole axial
SL Sensor magnets two pole axial-lateral			\checkmark	\checkmark	\checkmark	Two pole sensor magnets with enhanced geometric features like depressions and ledges, magnetization two pole axial-lateral (one sided bow shaped)I

3D models of magnet assembly and calculation path		$\sqrt{ }$	\checkmark	\checkmark	\checkmark	3D models of magnet and path of field calculation to check adequacy of problem input
circular path for arbitrary sorts of magnets	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
linear path for arbitrary sorts of magnets	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Field components in cylindrical and Cartesian coordinates for all sorts of magnets	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Rotatable result coordinates				since vers. 3.2	\checkmark	Amongst others for investigation of misplacements of magnets or sensors
In plane vector sums					\checkmark	Bxy, Bxz, Byz and Brt, Brz, Btz according to chosen result coordinate system
Fourier series of fields for periodic configurations	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Fourier transform of fields for non periodic configurations	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Continuous frequency distribution
\qquad	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Soft magnetic bodies	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	For magnetic systems A, C, 2D-M and 2D-R, AS, and CS
Force evaluation	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	By soft magnetic plates on magnets A and C
Computation of motor characteristic curves	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	For magnetic systems 2D-M and 2D-R for DC motors
Results export field components	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Results export field angles				since vers. 3.2	\checkmark	
Results export field angles			\checkmark	\checkmark	\checkmark	
Max. no. of data points circular path	3600	3600	3600	3600	3600	
Max. no. of data points linear path	1000	1000	1000	1000	1000	
Resolution of field angles	$<0.01^{\circ}$	$<0.01^{\circ}$	$<0.01^{\circ}$	$<0.01^{\circ}$	$<0.01^{\circ}$	
Max no. of poles per side of magnet	256	256	256	256	256	Maximum 36 for systems H (Halbach systems)
Extended graphical adjustments	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Sorts of diagram grid, strength of curves, fonts, axes
HTML help system	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Listings for circular paths	arbitrary angular range					

In case of additional questions please contact us. www.permagsoft.com

