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E. Computation of Permanent Magnetic Fields 

 

The following passages should give an impression, how permanent magnets can be calculated 

in respect of their field distribution. This overview certainly cannot cover all subjects. It will 

merely introduce the basic differential equations of magnetostatics, provide a quick glance 

onto the numerical method of Finite Elements and will then explain the most popular methods 

to get fields of magnets analytically. Some formulas will be presented, which are based on the 

theory of vector analysis. So the meaning of some symbols which are in use will be depicted 

in an appendix at the end of this chapter. 

 

1. General 

The root of all formulas for the analysis of macroscopic magnetic systems are the Maxwell 

equations together with some material laws. From these Maxwell equations partial differential 

equations of electromagnetic potentials can be derived. Those cover all fields of EM phenom-

ena like static and time dependent electric and magnetic fields, current distributions, electric 

circuits or wave phenomena. Here first an equation for static permanent magnets together with 

DC currents will be derived.  

Eq. (B.4) was: 

                                                        H(H)μμBB r0r


                                                   (E.1) 

This constitutive relation includes permanent magnets with remanence induction Br and a 

general field dependent but relatively small permeability µr. But it also can stand for soft mag-

netic materials, where Br is relatively small and µr can be very large.  

We now use the vector potential A and in addition Mr instead of Br, i.e.: 

                                AB


      and     0rr /μBM
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                                 (E.2) 

The use of A follows from B=0, compare (EA.8) in the appendix. Applying the rotation 

operator at both sides of (E.1) and using (E.2) provides: 
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Remembering eq. (A.4) we see, that the first term at the right side is nothing else than the cur-

rent density j. 
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Known parameters for this magnetostatic formulation are the DC current density, the distribu-

tion of remanent magnetization as well as permeabilities of hard or soft magnetic materials. 

The vector potential A is the unknown variable. In addition to partial differential equations as 

(E.4), additional constraints for the vector potential have to be demanded. These are relations 

for its behavior at the spatial borders of the problem, as well as gauge relations, see below. 

They consider that A is not defined uniquely by only the differential equation. Solutions of 

(E.4) for A and so for B, H etc. are analytically available for only a few special cases, which 

means that numerical methods have to be applied then. The most popular one is nowadays the 

Finite Element Method (FEM). 
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The Finite Element Method separates space into small elements, assuming a linear or polyno-

mial behavior of the components of A in each element. Fig. E1 shows such an element distri-

bution for a two dimensional example. The behavior of the potential in an element is para-

metrized with the help of its values on the nodes or edges of the element. Under these condi-

tions (E.4) can be reformulated to a system of linear equations with the node or edge values of 

A as unknowns.  The Finite Element Method so provides an approximation of reality which 

increases in quality with growing number of elements. Disadvantageous in this method is, that 

FEM software packages are very expensive on one hand, which means several 10.000 US$ for 

3D packages. In addition most of them demand a high grade of training and the analyses are 

fairly time consuming in most cases. 

Beside the direct solution of differentials equations and beside the FEM method, several other 

numerical methods like FDM (Finite Difference Method), BEM (Boundary Element Method) 

or FIT (Finite Integration Technique) exist, but are of less popularity or have to suffer from a 

few disadvantages compared to FEM.  

 

 

Fig. E1: Current coil and unidirectional permanent magnet surrounded by iron and air, ana-

lyzed with FEM method. 

As another approximation method the so called method of magnetic circuits is mentioned in 

nearly every book about magnetism. This was in extensive use in the past before FEM togeth-

er with cheap computer resources became available. This method is mostly used to treat  near-

ly closed magnetic circuit systems, that consist of magnets and current conductors which are 

embedded into soft magnetic materials To get good results here the existence of only small air 

gaps has to be demanded.  Please refer to literature for further information. 

After this general introduction, we will focus on the mathematical treatment of three dimen-

sional systems that consist only of permanent magnets. 

 

2.   Treatment of Mere Permanent Magnets  

In absence of DC currents and soft magnetic materials in (E.4) there is j=0. µr is close to one 

for the most cases of hard magnetic materials. So (E.4) reduces to the following formula: 
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

  

Now we introduce a gauge equation for the vector potential, here the so called Coulomb 

gauge: 

                                 0A 


                                         (E.5) 

Together with the vector identity (EA.9) from the appendix below, the above then becomes 

                           r0 MμA


                                                        (E.6)      

This differential equation has a general solution by eq. (E.7): 
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                                     (E.7)   

Here r is the location were the field has to be calculated and r’ is the vector of the magnets 

locations. The integrations are done over the magnets volume V as well as over the magnets 

surface F.  

Eq. (E.7) is of less popularity than the following formulation, where instead of the vector po-

tential a scalar potential is used. 

Taking eq. (E.1) together with setting µr=1 for the magnet leads together with (E.2) to: 

                                                          HμMμB 0r0


                                          

Taking into account that B has no sources, i.e. B=0 see eq. (A.3), this leads to  

                          rMH


                                                             (E.8) 

Since j=0. i.e. H=0, vector analysis provides that H can be expressed by a scalar potential, 

see eq. (EA.7) of the appendix:  

                                ΦH 


                                                               (E.9) 

This provides together with (E.8) in the absence of currents: 
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The general solution of (E.10) is given by:                        
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                                     (E.11) 

The integration is performed again over the magnets volume as well as over its surfaces. 

Which of both formulations i.e. the vector or scalar potential formulation is taken, often de-

pends on the ease of solving the respective integrals and may be different for different geome-

tries. In general, often the integrals can not be expressed by explicit formulas but have to be 

treated numerically.  

 

3.  Example for the Use of the Scalar Potential Formulation 

In the following we will show an easy example of the application of a magnetic scalar poten-

tial on a homogeneously magnetized cylinder or disc magnet with axial height h and radius ra. 
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The field shall be computed at a distance d from the magnets surface, see the sketch below. 

The magnetization is oriented in axial direction, i.e. M=Mr*ez.  

                               

Fig.E2: Sketch of a homogeneously magnetized flat cylinder. The field shall be computed at a 

point with distance d from its upper face.  

When we take the potential solution eq. (E.11) we see that inside the volume integral there is 

Mr=0, so that the volume integral itself vanishes. This is always the case with a homogene-

ous magnetization, so the fields are originated only by the pole faces. 

For simplification we combine the rest of eq. (E.11) with eq. (E.9) where the Nabla operator 

can be taken under the integral. So we get for the field: 
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The scalar product of magnetization with the surface’s normal vector is only non zero at the 

head faces of the cylinder, were the plus sign is valid at the top and minus at the bottom side:  

                                 rr MnM 


                           (E.13) 

The surface element of a head face is 

                                                                  'ddr'r'dF'                                                        (E.14) 

From symmetry it follows that at the center point at distance d, there can only be an axial, i.e. 

z-component of the field. So we only need the z-part of the Nabla operator under the integral: 
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z’=+/- h/2 is the location of the head faces, and z is the coordinate of the point of interest. Both 

z’ and z are related to the coordinate origin, which is located at the center of the magnet. After 

differentiation and expressing both z’ and z with the help of h and d one gets: 
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Now we summarize (E.12)-(E.15) and get for the field: 
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The integration over the angle is elementary and the integrals over the radius can be taken 

from integral maps. Doing this the final result can be rewritten to 

                                            zz eH(d)H
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E.g. a magnet with ra=5mm, h=3mm and Mr=800kA/m (=1T) originates a field of 171 kA/m 

at a distance of 1mm.  

Whereas this example shows a result which can be obtained quite easily, in general the inte-

grals can not be solved by explicit expressions and have to be treated numerically. In the case 

of non homogeneous distributions of magnetization additionally the volume integrals of eq. 

(E.11) have to be solved, which demand additional efforts.  

 

Appendix 

In the above some symbols of vector analysis like the Nabla operator were used and shall be 

depicted here.  

The Nabla operator can be introduced in Cartesian coordinates as a vector of single component 

differential operators:  
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In Cartesian coordinates this can be applied like a vector in the form of a dot product and cross 

product with other vectors. With scalar fields it can by applied by simple multiplication. So 

entities like divergence, rotation and gradient can be formed: 
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Since we used grad() in cylinder coordinates r,,z in the example above, we will give it here 

also in this coordinate system. Expressions for div(a) and rot(a) in other coordinate systems 

can be found in literature. 
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Another operator following from Nabla is the Laplace operator. In Cartesian coordinates: 
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Some important characteristics of vector fields in relation with the above operators are as fol-

lows: 

                                   Φa0a 


                          (EA.7)    

(In words: When a vector field is curl free it can be expressed as the gradient of a scalar poten-

tial)   

                                                        Aa0a


                           (EA.8) 

 (In words: When a vector field is source free it can be expressed as the curl (rotation) of a 

vector potential) 

One identity between different operator expressions of a vector field which was used above is 

the following: 
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A lot of other identities between the above operators in reference to scalar and vector fields 

can be found in literature. Also refer to literature with respect to the evaluation of surface and 

volume integrals as well as to relations between them, like the Stokes, Gauss or Greens rela-

tions. 


